CSE610 Special Topics on Mobile Network & Mobile sensing

Lecture 1: Class Introduction Yaxiong Xie

Wireless-connected devices are everywhere

ANTABLE MEDICAL DEVICES

UAVs

Wireless biomedical devices

WIRELESS

Deep Brain Neurostimulator Gastric Stimulators Foot Drop Implants

Wireless vehicles

Wireless wearable devices

Exponentially increasing number of wireless devices

3

Increasing demand for wireless connectivity

Connecting People

Increasing demand for wireless connectivity

Connecting Everything

Increasing demand for wireless connectivity

Connecting + Sensing Everything

Biological World

Physical World

Real time 6G to unify the experience across physical, digital and biological worlds

Precision Sensing & Actuation

CSE 610

Mobile Networks

5G & Next Generation

- Millimeter Wave Networks
- Massive MIMO
- Full Duplex Radios
- Dynamic Spectrum Access
- Programmable Surfaces

Internet of Things

- LoRa Networks
- Backscatter Networks
- Smart Cities & Homes
- Acoustic IoT
- IoT security

Wireless Localization

- WiFi Localization
- Battery Free Localization
- Antenna Arrays
- Time of Flight
- Tracking

Wireless Imaging

- Radar Imaging

Mobile Sensing

- Self Driving Cars
- Through wall Imaging
- Human Imaging
- 3D Mesh Recovery

Course Information

• Staff

- Instructor: Yaxiong Xie, 321 Davis Hall
- Office hours: After the class, On demand via email

Material

- Lecture slides
- Research papers
- Slack for discussions

Recommended Prerequisites

- Any undergraduate networking, wireless, or digital communications class
- Basic math and signal processing: probability, Fourier, ...

Architecture of the course

• Part 1: Lectures (6 weeks)

- Introducing the basics of wireless communication, mobile networks, and mobile sensing
- Mid-term test (won't be hard)

• Part 2: Research papers (4 weeks)

- Read and present research papers
- Ask three questions before class about each paper
- Write a summary for each paper
- Part 3: Course projects (4 weeks)
 - We will answer your projects related questions in class (check the course schedule)

Grading

• 10% for class participation

- Your class participation grade will be determined based on attendance and, most importantly, your concrete contributions to the paper discussion
- 20% for the midterm
- 20% for the paper presentation
- 50% for the course project

Course Project

• Teams:

- You should work in a team of 2 or 3, depending on the course enrollment
- Please start to find your teammates ASAP (you can use Slack to talk to each other)

• Project ideas:

- We strongly encourage you to propose new ideas!
 - We can turn the course projects into research papers if possible
- We will also provide a list of suggested research topics before the proposal deadline

Project proposal

- Submit a proposal via Slack and we will get back to you with suggestions
- More information can be found from the course website
- Project presentation
- Project report
 - State the contribution of each team member in the report

Paper Reading and Presentation

 Papers will be discussed in a very involved manner. All students are expected to have thoroughly read each paper, and to be prepared to pose and answer questions about each reading.

• Preparing for class

- Please prepare **TWO** questions for each paper and post them on Slack
- Class participation grade will be determined based on attendance and, most importantly, your concrete contributions to the paper discussion both on Perusall and in class
- Each student is required to write a short summary of the paper we discussed

Paper Reading and Presentation

Tasks for the presenters:

- Task-1: preparing the slides
- Task-2: presenting the paper and answering the questions raised by the audience
 - Audience are welcome to interrupt the presenter and raise the questions
 - Please try to ask the questions you raised on perusall during the presentation so that we could skip them later
- Task-3: going through the comments/questions and organize the discussion

Preparing the slides for a system paper

• Introduction and motivation

- What's the problem the paper solves?
- Why this problem is important?
- What's the state-of-the-art?

• Design

• How does the author solve the problem?

• Evaluation

• What's the performance of the new system?

Introduction of the course content

Introduction to the mobile networks

Mobile networks: typical scenarios

Mobile networks: typical scenarios

Mobile network is built on top of wireless networks!

• Wireless is a shared medium

• Wireless is a shared medium

- Interference between users using the same technology
- Point-to-point abstraction is a wrong abstraction

- Wireless is a shared medium
- Wireless is a less reliable

- Noise is naturally present in the system from many source
- Wireless signal attenuates during the propagation

30dBm

Wi-Fi AP 1

- Wireless is a shared medium
- Wireless is a less reliable

- Noise is naturally present in the system from many source
- Wireless signal attenuates during the propagation ullet
- Multipath effect

- Wireless is a shared medium
- Wireless is a less reliable

ullet

Noise is naturally present in the system from many source

Wireless signal attenuates during the propagation

• Wireless is a shared medium

Wall

• Wireless is a less reliable

 Wi-Fi AP 1
 Signal copy 2

 Mobile
 Constructively

 Signal strength is maximized!

ullet

 \bullet

Multipath effect

Noise is naturally present in the system from many source

Wireless signal attenuates during the propagation

- Wireless is a shared medium
- Wireless is a less reliable

Wall

- Noise is naturally present in the system from many source
- Wireless signal attenuates during the propagation
- Multipath effect

• Wireless is a shared medium

Wall

• Wireless is a less reliable

Wi-Fi AP 1

Signal copy 2

Mobile

devices 1

ullet

 \bullet

Multipath effect

Noise is naturally present in the system from many source

Wireless signal attenuates during the propagation

- Wireless is a shared medium
- Wireless is a less reliable

Wall

- Noise is naturally present in the system from many source
- Wireless signal attenuates during the propagation
- Multipath effect

- In wired networks, link bit error rate is 10⁻¹² and less
- Wireless networks are far from that target
 - Bit error rates of **10**⁻⁶ and above are common!

- Wireless is a shared medium
- Wireless is a less reliable
- Mobility

- Channel quality depends on distance, other factors
- Affects the throughput the mobile device can achieve
- Worst case: Outage, periods with no connectivity

- Wireless is a shared medium
- Wireless is a less reliable
- Mobility

• Not only the mobility of the transmitter and receiver matters!

Wireless channel

Wireless channel changes the received signal!

Wireless channel estimation

Wireless channel estimation

- How to convey information using wireless signal?
- How to guarantee reliably recovering of the information if the wireless channel cannot be fully reversed?

Mobile networks: typical scenarios

A wireless connection consists a wired Internet hop and a wireless last hop

A wireless connection consists a wired Internet hop and a wireless last hop

Wireless last hop Mbps

Capacity of wireless hop determines the upper bound of achievable throughput

Capacity of wireless hop determines the upper bound of achievable throughput

Capacity of wireless link varies!

Capacity of wireless link varies!

Capacity of wireless link varies!

Capacity of wireless hop determines the upper bound of achievable throughput

How fast the sender should send the data?

Real-time communication applications like Zoom

Low resolution -> Smaller data size

High resolution -> Larger data size

Real-time communication applications like Zoom

More than Wi-Fi and cellular: satellite

More than Wi-Fi and cellular: mm-wave

More than Wi-Fi and cellular: mm-wave

Huge bandwidth available at millimeter wave frequencies

Millimeter Wave can support data rates of multi-Gbps

Millimeter Waves Suffer from Attenuation

mmWave radios use phased antenna arrays to focus the power along one direction

Small Wavelength enables thousands of antennas to be packed into small space → Extremely narrow beams

Today's Networks : Broadcast

mmWave changes how wireless systems operate

mmWave changes how wireless systems operate

mmWave changes how wireless systems operate

Need to quickly find the right beam alignment and track the user.

Suffers in case of:

- Mobility
- Blockage

More than Wi-Fi and cellular: VLC

The speed can be extremely fast It preserves user privacy

Visible light communication

Introduction to the wireless networks

Introduction to the wireless networks

Wireless channel

Wireless channel estimation

Analogy: Wireless sensing VS. Computer vision

Images

RF devices

Channel state information (CSI)

Analogy: Wireless sensing VS. Computer vision

What's the potential application?

Image source: https://pixabay.com/photos/asleep-sleepy-man-asian-guy-tired-5500058/

Jiang, W., Xue, H., Miao, C., Wang, S., Lin, S., Tian, C., ... & Su, L. Towards 3D human pose construction using wifi. MobiCom 2020

Indoor localization

Device-free human tracking

3D human pose estimation

Wireless sensing + Deep learning

Thanks! Questions?